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» Much of previous work has focused on (distantly-)

supervised methods: Riedel et al. (2010);
Surdeanu et al. (2012)

supervision is not available for many domains
knowledge bases are often incomplete

In this work we do unsupervised relation extraction



» Existing work on unsupervised modeling used restricted

features and restrictive modeling assumptions.

Lin and Pantel (2001);
Yao etal. (2011);
Yao etal. (2012)

We define an unsupervised feature-rich model



» Framework: reconstruction error minimization
» Instantiation:our model for relation discovery

» Empirical evaluation: experiments on NYT corpus
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» Instantiation:our model for relation discovery

» Empirical evaluation: experiments on NYT corpus
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» For each sentence, we optimize the entity prediction quality while

marginalizing over relations:
Kingma and Welling (2014)
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» Not very tractable in this exact form:

negative sampling (as, e.g., in Mikolov et al 'l 3) instead of 'softmax’

12



>
>

» Empirical evaluation: experiments on NYT corpus
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» Data:

New York Times corpus (~2 million examples) aligned with Freebase
relations (only for evaluation)

» Baseline:

Rel-LDA, state-of-the-art generative model for unsupervised
relation discovery (Yao et al. (201 1))

DIRT, agglomerative clustering baseline (Lin and Pantel (2001))
» Evaluation:

Fl of the B-Cube measure
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Qualitative evaluation
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» Discrete-state autoencoder for relation extraction
Unsupervised
Feature-rich

» What'’s next!?
Semi-supervised relation extraction with distant supervision

Frame-semantic parsing with this framework
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Thank you!

Code available at:

github.com/diegma/relation-autoencoder
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