Discrete-State Variational Autoencoders for Joint Discovery and Factorization of Relations (TACL Paper)

Diego Marcheggiani and Ivan Titov

University of Amsterdam

Relation Extraction

Given two entities, predict the semantic relation that holds between them

Chomsky embarked on a program of study at UPenn

Relation Extraction

Given two entities, predict the semantic relation that holds between them

Chomsky embarked on a program of study at UPenn e_1

Relation Extraction

Given two entities, predict the semantic relation that holds between them

Chomsky embarked on a program of study at UPenn $e_1 \ studied_at \ e_2$

Motivation

- Much of previous work has focused on (distantly-) supervised methods:
 Riedel et al. (2010);
 Surdeanu et al. (2012)
 - supervision is not available for many domains
 - knowledge bases are often incomplete

In this work we do unsupervised relation extraction

Motivation

Existing work on unsupervised modeling used restricted features and restrictive modeling assumptions.

```
Lin and Pantel (2001);
Yao et al. (2011);
Yao et al. (2012)
```

We define an unsupervised feature-rich model

Outline

- Framework: reconstruction error minimization
- Instantiation: our model for relation discovery
- ▶ Empirical evaluation: experiments on NYT corpus

General framework

Instead of using annotated data, induce representations beneficial for inferring left-out facts

Unsupervised setting

Unsupervised setting

Unsupervised setting

Arguments reconstruction

Chomsky embarked on a program of study at UPenn

Not observable in the data

Studied_at (e1: Chomsky, e2:UPenn)

Arguments reconstruction

Chomsky embarked on a program of study at UPenn

Not observable in the data

Studied_at (e1: Chomsky, e2:UPenn)

Arguments reconstruction

Chomsky embarked on a program of study at UPenn

Relation induction

Chomsky embarked on a program of study at UPenn

Outline

- ▶ Framework: reconstruction error minimization
- Instantiation: our model for relation discovery
- ▶ Empirical evaluation: experiments on NYT corpus

 $\mathbf{u}_{e_1}, \mathbf{u}_{e_2} \in \mathbb{R}^d$ - encode semantic properties of entities e_1 and e_2

 $\mathbf{u}_{e_1}, \mathbf{u}_{e_2} \in \mathbb{R}^d$ - encode semantic properties of entities e_1 and e_2

RESCAL factorization

$$\psi^{RS}(e_1, e_2, r, \theta) = \mathbf{u}_{e_1}^T C_r \mathbf{u}_{e_2}$$

Nickel et al. (2011)

encodes interdependencies between entities

 $\mathbf{u}_{e_1}, \mathbf{u}_{e_2} \in \mathbb{R}^d$ - encode semantic properties of entities e_1 and e_2

RESCAL factorization

Nickel et al. (2011)

$$\psi^{RS}(e_1, e_2, r, \theta) = \mathbf{u}_{e_1}^T C_r \mathbf{u}_{e_2}$$

encodes interdependencies between entities

The reconstruction model: $p(e_2|e_1, r, \theta) = \frac{\exp(\psi(e_1, e_2, r, \theta))}{\sum_{e' \in \mathcal{E}} \exp(\psi(e_1, e', r, \theta))}$

scores each entity independently

Selectional preferences
$$\psi^{SP}(e_1,e_2,r,\theta) = \sum_{i=1}^{2} \mathbf{u}_{e_i}^T \mathbf{c}_{ir}$$
 Séaghdha (2010)

scores each entity independently

Séaghdha (2010)

Selectional preferences
$$\psi^{SP}(e_1,e_2,r,\theta) = \sum_{i=1}^{z} \mathbf{u}_{e_i}^T \mathbf{c}_{ir}$$

$$\psi^{RS} \qquad \psi^{ST}$$
 Hybrid $\psi^{HY}(e_1,e_2,r,\theta) = \mathbf{u}_{e_1}^T C_r \mathbf{u}_{e_2} + \sum_{i=1}^2 \mathbf{u}_{e_i}^T \mathbf{c}_{ir}$

combines RESCAL model and selectional preferences

Encoding component

The relation extraction model:

A feature-rich representation

$$q(r|x, \mathbf{w}) = \frac{\exp(\mathbf{w}^T \mathbf{g}(r, x))}{\sum_{r' \in \mathcal{R}} \exp(\mathbf{w}^T \mathbf{g}(r', x))}$$

For each sentence, we optimize the entity prediction quality while marginalizing over relations:

$$\sum_{i=1}^{2} \sum_{r \in \mathcal{R}} q(r|x, \mathbf{w}) \log p(e_i|e_{-i}, r, \theta)$$

 For each sentence, we optimize the entity prediction quality while marginalizing over relations:

$$\sum_{i=1}^{2} \sum_{r \in \mathcal{R}} q(r|x, \mathbf{w}) \log p(e_i|e_{-i}, r, \theta) - \sum_{r \in \mathcal{R}} q(r|x, \mathbf{w}) \log q(r|x, \mathbf{w})$$

$$H(q)$$

 For each sentence, we optimize the entity prediction quality while marginalizing over relations:

$$\sum_{i=1}^2 \sum_{r \in \mathcal{R}} q(r|x,\mathbf{w}) \log p(e_i|e_{-i},r,\theta) - \sum_{r \in \mathcal{R}} q(r|x,\mathbf{w}) \log q(r|x,\mathbf{w})$$
 Kingma and Welling (2014)
$$E_q[\log p(e_i|e_{-i},r,\theta)]$$

$$H(q)$$
 Variational lower bound on the pseudo-likelihood

For each sentence, we optimize the entity prediction quality while marginalizing over relations:

 $\sum_{i=1}^2 \sum_{r \in \mathcal{R}} q(r|x,\mathbf{w}) \log p(e_i|e_{-i},r,\theta) - \sum_{r \in \mathcal{R}} q(r|x,\mathbf{w}) \log q(r|x,\mathbf{w})$ Kingma and Welling (2014) $E_q[\log p(e_i|e_{-i},r,\theta)]$ H(q) Variational lower bound on the pseudo-likelihood

- Not very tractable in this exact form:
 - negative sampling (as, e.g., in Mikolov et al '13) instead of 'softmax'

Outline

- ▶ Framework: reconstruction error minimization
- Instantiation: our model for relation discovery
- ▶ Empirical evaluation: experiments on NYT corpus

Experimental setup

Data:

New York Times corpus (~2 million examples) aligned with Freebase relations (only for evaluation)

Baseline:

- Rel-LDA, state-of-the-art generative model for unsupervised relation discovery (Yao et al. (2011))
- ▶ DIRT, agglomerative clustering baseline (Lin and Pantel (2001))

Evaluation:

▶ FI of the B-Cube measure

Modelling the interdependence of arguments is beneficial.

Our model discovers relations not present in Freebase

ndence of

Qualitative evaluation

Conclusions

- Discrete-state autoencoder for relation extraction
 - Unsupervised
 - Feature-rich
- What's next?
 - Semi-supervised relation extraction with distant supervision
 - Frame-semantic parsing with this framework

Thank you!

Code available at:

github.com/diegma/relation-autoencoder

Funding:

NWO VIDI grant

Google Focused Award on Natural Language Understanding