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Word Representation

I In traditional NLP words are represented as a one-hot vector

I Syntactically and semantically correlated words appear as completely
different symbols

I Add general features to the word, pos, prefixes, etc. to overcome the
problem of data sparsity

I machine learning algorithms “understand” that dog is similar to
dogs

but what about cat and dog ? or good and amazing ?
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Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)

I the meaning of a word is given by the context in which the word
appears

I if two words appear in similar contexts (company), they have, to
some extent, similar meanings.

How can we formalize this intuition?
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Learning word representations

I Vanilla count-based approaches results in huge sparse matrices

I They can be approximated to dense matrices using SVD.
I Bengio et al. 2006 introduced a neural language model for learning

word representations. expensive
I Most popular model nowadays is Google’s skip-gram word2vec

[Mikolov et al. 2013].
I The idea is to predict context words of a given word.
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Skip-gram word2vec

I W ∈ R|V |×d is the word embedding matrix
I C ∈ R|V |×d is the context embedding matrix
I V is the words dictionary
I d is the vector size of the word representation
I the size of the context window is given as hyperparameter

For each context, word pair (c, w) ∈ D, we want to maximize

p(c|w) = exp(C(c) ·W (w))∑
c′ exp(C(c ′) ·W (w)) , (1)
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Word representations

Ok, well done! Now what?

I word embeddings as input to neural networks
I since deep learning models seek to solve non-convex optimization

problems, starting from a good point in the parameters space usually
helps.
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We can add as many hidden layers as we like transforming it in a deep
neural network.
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Neural networks recap

y = softmax(h W2 + b2)

W2 + b2

h = f(x W1 + b1)

W1 + b1

Input layer (x)

Standard feedforward neural networks cannot deal with variable length
input.



Language modeling

Compute the probability of a sentence, or
given a sequence of words predicting the word that comes next.

I trigram language model p(xt |xt−1, xt−2)

Mike      hardly   ever   believes   me      .                 

<bos-1>, <bos> <bos>, Mike Mike, hardly hardly, ever ever, believes believes, me

I cannot “see” the subject so cannot predict the right verb
I increase the size of the model.

I what about longer dependencies ?
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RNN step 1

x_1

U

V

s_1 = f(x_1 U + s_0 W)

y_1 = softmax(s_1 V)

W
s_0



RNN step 2
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RNN step 4

x_2x_1 x_3 x_4
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s_1 = f(x_1 U + s_0 W) s_2 = f(x_2 U + s_1 W) s_3 = f(x_3 U + s_2 W) s_4 = f(x_4 U + s_3 W)
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In each step we use information coming from all the previous steps.
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Training RNNs
I Total error is the sum of errors at each time step

∑
t E (y∗t , yt)

I Error is calculated as cross entropy loss E (y∗t , yt) = −y∗t log yt

I Calculating the gradients for V depends only on the current time
step t.

I For the recurrent parameters W is a bit different.
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V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E



Backpropagation through time
Since we sum errors, we also sum gradients at each time step.

∂E
∂W =

∑
t

∂Et
∂W

Following standard backprop derivation, for each time step t we end-up
having:

∂Et
∂W =

t−1∑
k=1

∂Et
∂yt

∂yt
∂st

∂st
∂sk

∂sk
∂W
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Backpropagation through time
For t = 3 we have:

∂E3
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k=1
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∂s3
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that is unfolded as:
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RNN learning issues
Vanishing (exploding) gradient for long dependencies.

I Exploding gradient solution:
I Gradient clipping – clipping the norm of the gradient if exceeds a

certain threshold.
I Vanishing gradient solution:

I Long short-term memory networks (LSTM) [Hochreiter and
Schmidhuber 1997]

I Gated recurrent unit networks (GRU) [Cho et al. 2014]
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Motivations

I What if we want an output of variable length with respect to the
input?

I Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

I machine translation: Mary eats apples. -> Marie mange des
pommes.

I question answering: Tim is playing in his room.||Where is
Tim? -> Tim is in his room.

Encoder decoder a.k.a. sequence to(2) sequence learning.
[Sutskever et al. 2014]
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I Encode the entire input sequence in a single vector

st = f (U · xt + W · st−1)

x_1 x_2 x_3 <eos>
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Sequence to sequence learning - Decoding

p(z1, ..., zT ′ |x1, ..., xT )

I Begin to decode the output sequence conditioning on this vector

y1 = softmax(V · sTe )
I continue decoding the second word in the sequence with

sd
1 = f (U · z1 + W · sTe ), y2 = softmax(V · sd

1 )
I keep decoding until an <eos> token is predicted.

y_4

x_1 x_2 x_3 <eos>

y_2 y_3

z_1

y_1

z_2 z_3

y_5

z_4

<eos>

z_5



Encoder decoder

p(z1, ..., zT ′ |x1, ..., xT ) =
T ′∏

t=1
p(zt |sTe , z1, ..., zt−1)

y_4

x_1 x_2 x_3 <eos>

y_2 y_3

z_1

y_1

z_2 z_3

y_5

z_4

<eos>

z_5



Conclusions

I Vanishing gradient is even more problematic in this setting.
I LSTMs or GRUs are crucial to capture long term dependencies.
I Very appealing in task like machine translation.
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Lecture recap

I Word embeddings recap
I Neural networks recap
I Recurrent neural networks
I Sequence to sequence learning with neural networks



That’s it!

Thanks for your attention!
Questions?
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