
Recurrent Neural Networks and
Encoder-Decoder Models

Diego Marcheggiani

University of Amsterdam
ILLC

Unsupervised Language Learning 2016

Outline

Word Embeddings Recap

Recurrent Neural Networks

Encoder Decoder Approach

Outline

Word Embeddings Recap

Recurrent Neural Networks

Encoder Decoder Approach

Word Representation

I In traditional NLP words are represented as a one-hot vector

I Syntactically and semantically correlated words appear as completely
different symbols

I Add general features to the word, pos, prefixes, etc. to overcome the
problem of data sparsity

I machine learning algorithms “understand” that dog is similar to
dogs

but what about cat and dog ? or good and amazing ?

Word Representation

I In traditional NLP words are represented as a one-hot vector
I Syntactically and semantically correlated words appear as completely

different symbols

I Add general features to the word, pos, prefixes, etc. to overcome the
problem of data sparsity

I machine learning algorithms “understand” that dog is similar to
dogs

but what about cat and dog ? or good and amazing ?

Word Representation

I In traditional NLP words are represented as a one-hot vector
I Syntactically and semantically correlated words appear as completely

different symbols
I Add general features to the word, pos, prefixes, etc. to overcome the

problem of data sparsity
I machine learning algorithms “understand” that dog is similar to

dogs

but what about cat and dog ? or good and amazing ?

Word Representation

I In traditional NLP words are represented as a one-hot vector
I Syntactically and semantically correlated words appear as completely

different symbols
I Add general features to the word, pos, prefixes, etc. to overcome the

problem of data sparsity
I machine learning algorithms “understand” that dog is similar to

dogs

but what about cat and dog ? or good and amazing ?

Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)

I the meaning of a word is given by the context in which the word
appears

I if two words appear in similar contexts (company), they have, to
some extent, similar meanings.

How can we formalize this intuition?

Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)
I the meaning of a word is given by the context in which the word

appears

I if two words appear in similar contexts (company), they have, to
some extent, similar meanings.

How can we formalize this intuition?

Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)
I the meaning of a word is given by the context in which the word

appears
I if two words appear in similar contexts (company), they have, to

some extent, similar meanings.

How can we formalize this intuition?

Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)
I the meaning of a word is given by the context in which the word

appears
I if two words appear in similar contexts (company), they have, to

some extent, similar meanings.
How can we formalize this intuition?

Co-occurence matrix

Word similarity

Learning word representations

I Vanilla count-based approaches results in huge sparse matrices

I They can be approximated to dense matrices using SVD.
I Bengio et al. 2006 introduced a neural language model for learning

word representations. expensive
I Most popular model nowadays is Google’s skip-gram word2vec

[Mikolov et al. 2013].
I The idea is to predict context words of a given word.

Learning word representations

I Vanilla count-based approaches results in huge sparse matrices
I They can be approximated to dense matrices using SVD.

I Bengio et al. 2006 introduced a neural language model for learning
word representations. expensive

I Most popular model nowadays is Google’s skip-gram word2vec
[Mikolov et al. 2013].

I The idea is to predict context words of a given word.

Learning word representations

I Vanilla count-based approaches results in huge sparse matrices
I They can be approximated to dense matrices using SVD.
I Bengio et al. 2006 introduced a neural language model for learning

word representations.

expensive
I Most popular model nowadays is Google’s skip-gram word2vec

[Mikolov et al. 2013].
I The idea is to predict context words of a given word.

Learning word representations

I Vanilla count-based approaches results in huge sparse matrices
I They can be approximated to dense matrices using SVD.
I Bengio et al. 2006 introduced a neural language model for learning

word representations. expensive
I Most popular model nowadays is Google’s skip-gram word2vec

[Mikolov et al. 2013].
I The idea is to predict context words of a given word.

Skip-gram word2vec

I W ∈ R|V |×d is the word embedding matrix
I C ∈ R|V |×d is the context embedding matrix
I V is the words dictionary
I d is the vector size of the word representation
I the size of the context window is given as hyperparameter

For each context, word pair (c, w) ∈ D, we want to maximize

p(c|w) = exp(C(c) ·W (w))∑
c′ exp(C(c ′) ·W (w)) , (1)

Skip-gram word2vec

For each context, word pair (c, w) ∈ D, we want to maximize

p(c|w) = exp(C(c) ·W (w))∑
c′ exp(C(c ′) ·W (w)) , (2)

Cons
I

∑
c′ is intractable, but negative sampling does the job.

Pros
I Log-linear, easy to train!

Skip-gram word2vec

For each context, word pair (c, w) ∈ D, we want to maximize

p(c|w) = exp(C(c) ·W (w))∑
c′ exp(C(c ′) ·W (w)) , (2)

Cons
I

∑
c′ is intractable, but negative sampling does the job.

Pros
I Log-linear, easy to train!

Word representations

Ok, well done! Now what?

I word embeddings as input to neural networks
I since deep learning models seek to solve non-convex optimization

problems, starting from a good point in the parameters space usually
helps.

Word representations

Ok, well done! Now what?
I word embeddings as input to neural networks
I since deep learning models seek to solve non-convex optimization

problems, starting from a good point in the parameters space usually
helps.

Outline

Word Embeddings Recap

Recurrent Neural Networks

Encoder Decoder Approach

Neural networks recap

Input layer (x)

Neural networks recap

W1 + b1

Input layer (x)

I W1 is a parameter matrix and b1 is the bias

Neural networks recap

h = f(x W1 + b1)

W1 + b1

Input layer (x)

I W1 is a parameter matrix and b1 is the bias
I f is a non-linear activation function
I h is a hidden layer of the network

Neural networks recap

W2 + b2

h = f(x W1 + b1)

W1 + b1

Input layer (x)

I W1 is a parameter matrix and b1 is the bias
I f is a non-linear activation function
I h is a hidden layer of the network
I W2, b2 more parameters

Multi-layer perceptron

y = softmax(h W2 + b2)

W2 + b2

h = f(x W1 + b1)

W1 + b1

Input layer (x)

I W1 is a parameter matrix and b1 is the bias
I f is a non-linear activation function
I h is a hidden layer of the network
I W2, b2 more parameters

We can add as many hidden layers as we like transforming it in a deep
neural network.

Multi-layer perceptron

y = softmax(h W2 + b2)

W2 + b2

h = f(x W1 + b1)

W1 + b1

Input layer (x)

I W1 is a parameter matrix and b1 is the bias
I f is a non-linear activation function
I h is a hidden layer of the network
I W2, b2 more parameters

We can add as many hidden layers as we like transforming it in a deep
neural network.

Neural networks recap

y = softmax(h W2 + b2)

W2 + b2

h = f(x W1 + b1)

W1 + b1

Input layer (x)

Standard feedforward neural networks cannot deal with variable length
input.

Language modeling

Compute the probability of a sentence, or
given a sequence of words predicting the word that comes next.

I trigram language model p(xt |xt−1, xt−2)

Mike hardly ever believes me .

<bos-1>, <bos> <bos>, Mike Mike, hardly hardly, ever ever, believes believes, me

I cannot “see” the subject so cannot predict the right verb
I increase the size of the model.

I what about longer dependencies ?

Language modeling

Compute the probability of a sentence, or
given a sequence of words predicting the word that comes next.

I trigram language model p(xt |xt−1, xt−2)

Mike hardly ever believes me .

<bos-1>, <bos> <bos>, Mike Mike, hardly hardly, ever ever, believes believes, me

I cannot “see” the subject so cannot predict the right verb
I increase the size of the model.
I what about longer dependencies ?

Recurrent Neural Networks

x_1

Recurrent Neural Networks

x_1

U

Recurrent Neural Networks

x_1

U

s_1 = f(x_1 U + s_0 W)

s_0
W

Recurrent Neural Networks

x_1

U

V

s_1 = f(x_1 U + s_0 W)

s_0
W

Recurrent Neural Networks

x_1

U

V

s_1 = f(x_1 U + s_0 W)

y_1 = softmax(s_1 V)

s_0
W

RNN step 1

x_1

U

V

s_1 = f(x_1 U + s_0 W)

y_1 = softmax(s_1 V)

W
s_0

RNN step 2

x_2x_1

U U

V V

s_1 = f(x_1 U + s_0 W) s_2 = f(x_2 U + s_1 W)

y_1 = softmax(s_1 V) y_2 = softmax(s_2 V)

W W
s_0

RNN step 3

x_2x_1 x_3

U U U

V V V

s_1 = f(x_1 U + s_0 W) s_2 = f(x_2 U + s_1 W) s_3 = f(x_3 U + s_2 W)

y_1 = softmax(s_1 V) y_2 = softmax(s_2 V) y_3 = softmax(s_3 V)

W W W
s_0

RNN step 4

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 = f(x_1 U + s_0 W) s_2 = f(x_2 U + s_1 W) s_3 = f(x_3 U + s_2 W) s_4 = f(x_4 U + s_3 W)

y_1 = softmax(s_1 V) y_2 = softmax(s_2 V) y_3 = softmax(s_3 V) y_4 = softmax(s_4 V)

W W W W
s_0

In each step we use information coming from all the previous steps.

Language modeling (reprise)

<bos>

U U U U

V V V V

Mike hardly ever believes

U

V

me

U

V

<eos>

Mike hardly ever believes me

Long dependencies are captured

(at least in theory)

Language modeling (reprise)

<bos>

U U U U

V V V V

Mike hardly ever believes

U

V

me

U

V

<eos>

Mike hardly ever believes me

Long dependencies are captured (at least in theory)

Training RNNs
I Total error is the sum of errors at each time step

∑
t E (y∗t , yt)

I Error is calculated as cross entropy loss E (y∗t , yt) = −y∗t log yt

I Calculating the gradients for V depends only on the current time
step t.

I For the recurrent parameters W is a bit different.

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Backpropagation through time
Since we sum errors, we also sum gradients at each time step.

∂E
∂W =

∑
t

∂Et
∂W

Following standard backprop derivation, for each time step t we end-up
having:

∂Et
∂W =

t−1∑
k=1

∂Et
∂yt

∂yt
∂st

∂st
∂sk

∂sk
∂W

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Backpropagation through time
For t = 3 we have:

∂E3
∂W =

2∑
k=1

∂E3
∂y3

∂y3
∂s3

∂s3
∂sk

∂sk
∂W

that is unfolded as:

∂E3
∂W = ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂W + ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂W

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Backpropagation through time

∂E3
∂W = ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂W + ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂W

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Backpropagation through time
∂E3
∂W = ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂W + ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂W

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Backpropagation through time
∂E3
∂W = ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂W + ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂W

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Backpropagation through time
∂E3
∂W = ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂W + ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂W

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Backpropagation through time
∂E3
∂W = ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂W + ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂W

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Backpropagation through time
∂E3
∂W = ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂W + ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂W

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Backpropagation through time
∂E3
∂W = ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂W + ∂E3

∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂W

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

RNN learning issues
Vanishing (exploding) gradient for long dependencies.

I Exploding gradient solution:
I Gradient clipping – clipping the norm of the gradient if exceeds a

certain threshold.
I Vanishing gradient solution:

I Long short-term memory networks (LSTM) [Hochreiter and
Schmidhuber 1997]

I Gated recurrent unit networks (GRU) [Cho et al. 2014]

x_2x_1 x_3 x_4

U U U U

V V V V

s_1 s_2 s_3 s_4

y_1 y_2 y_3 y_4

W W WW
s_0

E_1 E_2 E_3 E_4

E

Outline

Word Embeddings Recap

Recurrent Neural Networks

Encoder Decoder Approach

Motivations

I What if we want an output of variable length with respect to the
input?

I Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

I machine translation: Mary eats apples. -> Marie mange des
pommes.

I question answering: Tim is playing in his room.||Where is
Tim? -> Tim is in his room.

Encoder decoder a.k.a. sequence to(2) sequence learning.
[Sutskever et al. 2014]

Motivations

I What if we want an output of variable length with respect to the
input?

I Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

I machine translation: Mary eats apples. ->

Marie mange des
pommes.

I question answering: Tim is playing in his room.||Where is
Tim? -> Tim is in his room.

Encoder decoder a.k.a. sequence to(2) sequence learning.
[Sutskever et al. 2014]

Motivations

I What if we want an output of variable length with respect to the
input?

I Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

I machine translation: Mary eats apples. -> Marie mange des
pommes.

I question answering: Tim is playing in his room.||Where is
Tim? ->

Tim is in his room.

Encoder decoder a.k.a. sequence to(2) sequence learning.
[Sutskever et al. 2014]

Motivations

I What if we want an output of variable length with respect to the
input?

I Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

I machine translation: Mary eats apples. -> Marie mange des
pommes.

I question answering: Tim is playing in his room.||Where is
Tim? -> Tim is in his room.

Encoder decoder a.k.a. sequence to(2) sequence learning.
[Sutskever et al. 2014]

Motivations

I What if we want an output of variable length with respect to the
input?

I Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

I machine translation: Mary eats apples. -> Marie mange des
pommes.

I question answering: Tim is playing in his room.||Where is
Tim? -> Tim is in his room.

Encoder decoder a.k.a. sequence to(2) sequence learning.
[Sutskever et al. 2014]

Sequence to sequence learning - Encoding

p(z1, ..., zT ′ |x1, ..., xT)

I Encode the entire input sequence in a single vector

st = f (U · xt + W · st−1)

x_1 x_2 x_3 <eos>

Sequence to sequence learning - Encoding

p(z1, ..., zT ′ |x1, ..., xT)

I Encode the entire input sequence in a single vector

st = f (U · xt + W · st−1)

x_1 x_2 x_3 <eos>

Sequence to sequence learning - Decoding

p(z1, ..., zT ′ |x1, ..., xT)

I proceed like in a standard RNN starting from the encoding vector

y1 = softmax(V · sTe)

x_1 x_2 x_3 <eos>

y_1

Sequence to sequence learning - Decoding

p(z1, ..., zT ′ |x1, ..., xT)

I proceed like in a standard RNN starting from the encoding vector

y1 = softmax(V · sTe)

I and then continue decoding the second word in the sequence with

sd
1 = f (U · z1 + W · sTe), y2 = softmax(V · ss

1)

x_1 x_2 x_3 <eos>

y_2

z_1

y_1

Sequence to sequence learning - Decoding

p(z1, ..., zT ′ |x1, ..., xT)

I Begin to decode the output sequence conditioning on this vector

y1 = softmax(V · sTe)
I continue decoding the second word in the sequence with

sd
1 = f (U · z1 + W · sTe), y2 = softmax(V · sd

1)
I keep decoding until an <eos> token is predicted.

y_4

x_1 x_2 x_3 <eos>

y_2 y_3

z_1

y_1

z_2 z_3

y_5

z_4

<eos>

z_5

Encoder decoder

p(z1, ..., zT ′ |x1, ..., xT) =
T ′∏

t=1
p(zt |sTe , z1, ..., zt−1)

y_4

x_1 x_2 x_3 <eos>

y_2 y_3

z_1

y_1

z_2 z_3

y_5

z_4

<eos>

z_5

Conclusions

I Vanishing gradient is even more problematic in this setting.
I LSTMs or GRUs are crucial to capture long term dependencies.
I Very appealing in task like machine translation.

y_4

x_1 x_2 x_3 <eos>

y_2 y_3

z_1

y_1

z_2 z_3

y_5

z_4

<eos>

z_5

Lecture recap

I Word embeddings recap
I Neural networks recap
I Recurrent neural networks
I Sequence to sequence learning with neural networks

That’s it!

Thanks for your attention!
Questions?

	Word Embeddings Recap
	Recurrent Neural Networks
	Encoder Decoder Approach

