Recurrent Neural Networks and
Encoder-Decoder Models

Diego Marcheggiani

University of Amsterdam
ILLC

Unsupervised Language Learning 2016

Outline

Word Embeddings Recap

Recurrent Neural Networks

Encoder Decoder Approach

Outline

Word Embeddings Recap

Word Representation

» In traditional NLP words are represented as a one-hot vector

Word Representation

» In traditional NLP words are represented as a one-hot vector

» Syntactically and semantically correlated words appear as completely
different symbols

Word Representation

» In traditional NLP words are represented as a one-hot vector

» Syntactically and semantically correlated words appear as completely
different symbols

> Add general features to the word, pos, prefixes, etc. to overcome the
problem of data sparsity

» machine learning algorithms “understand” that dog is similar to
dogs

Word Representation

» In traditional NLP words are represented as a one-hot vector

» Syntactically and semantically correlated words appear as completely
different symbols

> Add general features to the word, pos, prefixes, etc. to overcome the
problem of data sparsity

» machine learning algorithms “understand” that dog is similar to
dogs

but what about cat and dog ? or good and amazing ?

Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)

Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)

» the meaning of a word is given by the context in which the word
appears

Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)

» the meaning of a word is given by the context in which the word
appears

» if two words appear in similar contexts (company), they have, to
some extent, similar meanings.

Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)

» the meaning of a word is given by the context in which the word
appears

» if two words appear in similar contexts (company), they have, to
some extent, similar meanings.

How can we formalize this intuition?

Co-occurence matrix

Corpus sentences ‘ l Co-occurrence counts | l Vector
He also found five fish swimming in murky water in an the 12 12
old bathtub.
a 9 9
‘We do abhor dust and dirt, and stains on the bathtub,
and any kind of filth. of 7 7
Above At the far end of the garden room a bathtub has and 6 6
been planted with herbs for the winter. 5
They had been drinking Cisco, a fruity, wine-based fluid mn g
that smells and tastes like a mixture of cough syrup and .
bathtub gin. ﬁ |:> .
Science finds that a surface tension on the water can L 2 2
draw the boats together, like toy boats in a bathtub. water | 2 9
In fact, the godfather of gloom comes up with a plot that e 2
takes in Windsor Davies (the ghost of sitcoms past), a 2
bathtub and a big box of concentrated jelly. from 2 9
“I'l tell him,” said the Dean from the bathroom above stain i 1
the sound of bathwater falling from a great height
into the ample Edwardian bathtub. toy 1 1
god- 1 1
father 1
Cisco |1

Word similarity

olice
) twtness §U5§ﬁggt prison
oictim
éleath . R
gnurder vestigation
&riminal
Quilty
sentence
rosecut
sral gase ¢ at%%éﬁf
ria
ury Judge

ourt
4 dustice

Learning word representations

» Vanilla count-based approaches results in huge sparse matrices

Learning word representations

» Vanilla count-based approaches results in huge sparse matrices

» They can be approximated to dense matrices using SVD.

Learning word representations

» Vanilla count-based approaches results in huge sparse matrices
» They can be approximated to dense matrices using SVD.

> Bengio et al. 2006 introduced a neural language model for learning
word representations.

Learning word representations

» Vanilla count-based approaches results in huge sparse matrices
» They can be approximated to dense matrices using SVD.

> Bengio et al. 2006 introduced a neural language model for learning
word representations. expensive

» Most popular model nowadays is Google's skip-gram word2vec
[Mikolov et al. 2013].

» The idea is to predict context words of a given word.

Skip-gram word2vec

W e R!VI*9 is the word embedding matrix

C € RIVIX? is the context embedding matrix
V is the words dictionary

d is the vector size of the word representation

vV v v v Yy

the size of the context window is given as hyperparameter

For each context, word pair (¢, w) € D, we want to maximize

oy ep(C(e)- W(w)
PLelw) = S op(C(e) - W(w))’

Skip-gram word2vec

For each context, word pair (c, w) € D, we want to maximize

exp(C(c) - W(w))
2o exp(C(c) - W(w))’

p(clw) =

Cons

> > . is intractable, but negative sampling does the job.

Skip-gram word2vec

For each context, word pair (c, w) € D, we want to maximize

exp(C(c) - W(w))
2o exp(C(c) - W(w))’

p(clw) =

Cons
> > . is intractable, but negative sampling does the job.
Pros

» Log-linear, easy to train!

Word representations

Ok, well done! Now what?

Word representations

Ok, well done! Now what?

» word embeddings as input to neural networks

» since deep learning models seek to solve non-convex optimization

problems, starting from a good point in the parameters space usually
helps.

Outline

Recurrent Neural Networks

Neural networks recap

. . . . Input layer (x)

Neural networks recap

T W1 + b

[. . . .] Input layer (x)

» W is a parameter matrix and b; is the bias

Neural networks recap

O O O h = fix W1 + b1)

t W1 + b1

[. . . .] Input layer (x)

» W, is a parameter matrix and by is the bias
» f is a non-linear activation function
> his a hidden layer of the network

Neural networks recap

W2 + b2

O O O h = fix W1 + b1)

t W1 + b1

. . . . Input layer (x)

Wi is a parameter matrix and by is the bias
f is a non-linear activation function

h is a hidden layer of the network

W,, b, more parameters

vvyyy

Multi-layer perceptron

@) y = softmax(h W2 + b2)

A
W2 + b2
O 0O O h =f(x W1 + b1)
4 W1 + b1

[. . . .] Input layer (x)

Wi is a parameter matrix and by is the bias
f is a non-linear activation function

h is a hidden layer of the network

W,, b, more parameters

vV vyYyye.y

Multi-layer perceptron

@) y = softmax(h W2 + b2)

A
W2 + b2
O 0O O h =f(x W1 + b1)
4 W1 + b1

[. . . .] Input layer (x)

» W is a parameter matrix and by is the bias
» f is a non-linear activation function
> his a hidden layer of the network
» W5, b, more parameters
We can add as many hidden layers as we like transforming it in a deep
neural network.

Neural networks recap

@) y = softmax(h W2 + b2)

A
W2 + b2
O O O h = fix W1 + b1)
t W1 + b1

[. . . .] Input layer (x)

Standard feedforward neural networks cannot deal with variable length
input.

Language modeling

Compute the probability of a sentence, or
given a sequence of words predicting the word that comes next.

> trigram language model p(x:|x;—1, Xt—2)

Mike hardly ever Dbelieves me

©o00 ©o00 ©o00 ©o00 ©o00 © 0 O
(0000 (000 (@000 (0000 (0000000

<bos-1>, <bos> <bos>, Mike Mike, hardly hardly, ever ever, believes believes, me

» cannot “see” the subject so cannot predict the right verb

> increase the size of the model.

Language modeling

Compute the probability of a sentence, or
given a sequence of words predicting the word that comes next.

> trigram language model p(x:|x;—1, Xt—2)

Mike hardly ever Dbelieves me

©o00 ©o00 ©o00 ©o00 ©o00 © 0 O
(0000 (000 (@000 (0000 (0000000

<bos-1>, <bos> <bos>, Mike Mike, hardly hardly, ever ever, believes believes, me

» cannot “see” the subject so cannot predict the right verb
> increase the size of the model.

» what about longer dependencies ?

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

—
o

s_1=f(x_1U+s_0W) °
o

o ©
W ¥
s 0 U

o

e o|

o

o

©

x_1

Recurrent Neural Networks

s 1=fx 1U+s_0W)
oW

s_0 ©

o

o

(000 o) ="

>

x
., (0o 0 0) I

Recurrent Neural Networks

—
o

y_1 = softmax(s_1V) (]

o

o)

A

\

~

o

s_1=f(x_1U+s_0W) °
o

o ©
W ¥
s 0 U

o

e)

<]

o

©

x_1

RNN step 1

—
o

y_1 = softmax(s_1V) (]

o

o)

A

\

~

o

s_1=f(x_1U+s_0W) °
o

° o)

oW &
s 0o U

e o|

<]

o

©

x_1

RNN step 2

(0]
y_1 = softmax(s_1 V) °
o
)
A
\
~
o
o
s 1=fx 1U+s 0W)
o
o
oW

°
x
INCEECEC); ="

y_2 = softmax(s_2 V)

s 2=fx2U+s_1W)

W

< '
\M(oooo; <:=(oooo; <=Loooo)

RNN step 3

y_1 = softmax(s_1 V)

s_1=f(x_1U+s_0W)

— — —
o o o
° y_2 = softmax(s_2 V) (] y_3 = softmax(s_3 V) °
o o o
o) o) O
A A A
\ \ \
~ ~ —
[°) o °
O s2-fx2U+s1W) |9 s3=fx3U+s2w)|®
o - (O - (O
o w o/ w o
A A A
U U U
-\ ~ —
(e} (o] (e}
(e} (e} (e}
o o o
© © ©
x_1 x_2 x_3

RNN step 4

— ~ ~ ~
o ° o [}
y_1 = softmax(s_1V) © y_2 = softmax(s_2 V) (8] y_3 = softmax(s_3 V) © y_4 = softmax(s_4 V) °
o o o o
9 &) 9 9
A A A Y
% V \% \'
L L L ~
o o o o
st=fx1ussow O s2=x2U+s 1w |9 s3=13U+s2W) (O|s4=fx4U+s3w)|®
B - - o - (O - (O - |0
o 9 w &) W 9 w 9
oW X A A A
s0|o] U] U
L N ~ ~
o ° ° ° °
o °) °
o ° o °
© © © ©
x_1 Xx_2 x_3 x_4

In each step we use information coming from all the previous steps.

Language modeling (reprise)

Mike hardly ever believes me <eos>
A A A A A A
(o] (o] (o] (o] (o] (o]
(o] (o] (o] (o] (o] (o]
(o] (o] (o] (o] (o] (o]
))) &))
\ \ \ Vv TV TV
L L L L - -
(o] o] (o] o o
o] o o] (o] o o
o] o o] (o] o o
o o)) o ©) ©)
(o]
° U U U U U U
e o) o) o o) o) o)
o (o] (o] o (o] (o]
o (o] (o] o (o] (o]
© © © © © ©
<bos> Mike hardly ever believes me

Long dependencies are captured

Language modeling (reprise)

Mike hardly ever believes me <eos>
A A A A A A
(o] (o] (o] (o] (o] (o]
(o] (o] (o] (o] (o] (o]
(o] (o] (o] (o] (o] (o]
))) &))
\ \ \ Vv TV TV
L L L L - -
(o] o] (o] o o
o] o o] (o] o o
o] o o] (o] o o
o o)) o ©) ©)
(o]
° U U U U U U
e o) o) o o) o) o)
o (o] (o] o (o] (o]
o (o] (o] o (o] (o]
© © © © © ©
<bos> Mike hardly ever believes me

Long dependencies are captured (at least in theory)

Training RNNs

> Total error is the sum of errors at each time step >, E(y;", y)
» Error is calculated as cross entropy loss E(y;, y:) = —y; log y:

» Calculating the gradients for V depends only on the current time
step t.

» For the recurrent parameters W is a bit different.

R g G
T8 ~@0 0 O —»
o —*@0 0 o

@e06 0 =*606 606 >E06 60—

x -
L Ees =6
@eoorc=>6

NEee =@

x
x
©
x
~

Backpropagation through time
Since we sum errors, we also sum gradients at each time step.
OE _ -~ OE,
ow - ow
Following standard backprop derivation, for each time step t we end-up
having:

8yt 8st aSk ow

8Et Z 3Et 8_}/1: (95: 65/(

@eoor=>Eo o0 *eo o0
@eeorcreooo oo o)_ﬂ
(N S NN g R S

=

c
[s
c

o)
B

x
x
N
x
w
x
s

I RO e R e IR S

Backpropagation through time

For t = 3 we have:

8E3 Z 3E3 8)/3 853 8Sk
8y3 853 aSk ow

that is unfolded as:

8E3 N 8E3 (9}/3 (953 852 651 8E3 (9}/3 (953 652

OW ~ ys Os; 95,95, OW | By, Bs; D5, OW

<
<
<

@©® 06 ="©@ 060606 —*E06 06

@oeoorc*Goo0) —*E0 00 »

@eeo)yc"c0ooo) "0 o0 o)—»

=

c
c
c

L @eeserreoo 0 =Eo 60>

x

x
(N
x
()
x
~

Backpropagation through time

8E3 N 8E3 8y3 653 852 ﬁ 8E3 8}/3 853 852

OW ~ dy; Os3 Osp Os; OW ' dys Os; Os, OW

y.4

m

o

(oooo)—>(oooo)—<>[oooo)—>\
@o ooy koooo)—<>(oooo)—>\

=
c

'_‘(oooo)c @o o oyr="coo0o)—
vw@o oo koooo)—<>(oooo)—>

il
5
©o0o0o
2
x

>
x
w
x
I

Backpropagation through time

3E3 - 8E3 (7y3 053 852 ﬁ 8E3 6)/3 853 852

OW ~ Oys Os3 0sp 51 OW ' Dy ds3 Dsy OW

L l l l

v.1(9] v.2|® v.3|® v.4|®

° ° ° °

© o © o

y O A

°) °)

<1 |© s.2|© 5.3 5.4/0

Ao ° ° °

° o w o) w © w Q)
s0|© w

ol u U U U

o 9 a 6 a

° ° ° °

° ° ° °

© © © ©

x_1 X 2 X 3 x_ 4

Backpropagation through time

3E3 - 3E3 8y3 (953 852 @ ()E3 0)/3 053 6952

OW ~ Oys Os3 Osp Os1 OW Dy Ds3 Dsy OW

i I |
Oys

©) ©)

y19) y.2|® y.3(©| y.4|©

° ° ° °

© o © o

y I

°) °)

<1 |© s.2|© 5.3 5.4/0

Ao ° ° °

° o w) W ©) w Q)

500 w

ol u U U U

© o) B o) 0|

° ° ° °

° ° ° °

© © © ©
x_1 x_2 x_3 x_4

Backpropagation through time

3E3 - 8E3 (9y3 (953 852 @ ()E3 0)/3 053 6952

OW ~ Oys Os3 0sp Os1 OW Dy Ds3 Dsy OW

]

f - i
Oys

o) o o) o

v1|® y.2(® v.3|© v.4(©

of o of o

o o O | o o

v oo N

o) o o) o

<1 |© s.2|© 5.3 5.4/0

~A|o] o of o

5 o w oJ w o w o

s0|© w

° U U U U

© o) B o) 0|

o| o o| o

o| o o| o

o o o o
x_1 X 2 X 3 x_ 4

Backpropagation through time

3E3 - 8E3 8y3 (953 852 @ ()E3 (9)/3 053 6952

OW ~ dys Os3 05, Os1 OW Dy Ds3 Dsy OW

]

! 1 =] i
Oys

o) © o) ©

y19) y.2|® y.3(©| y.4|©

o ° o °

o o O | o o

y IR v

o) © g—sﬁ o) ©

s1|© s2|0| 4 ® 5.3 5.4/0

o o o o

°) w o) w © w o)

s0|© w

° U U U U

© o) B o) 0|

o ° o °

o ° o °

o o o o
x_1 x_2 x_3 x_4

Backpropagation through time

3E3 - 8E3 8y3 (953 852 @ ()Eg, (9)/3 053 052

OW ~ dys Os3 0sp Os1 OW Dy Ds3 Dsy OW

]

f - i
Oys
o) o o) o
y19) y.2|® 3|9 v.4|©
of o of o
o o O | o o
.Y v s v v
951 5 953
ow |o f) 5% 0|)
<1 |© R ® 5.3 5.4/0
~A|o] o of o
o o w J w o w o
s0|© w
o U U U U
© o) B o) 0|
o| o o| o
o| o o| o
o o o o
x_1 X_2 x_3 x_4

Backpropagation through time

3E3 - 8E3 8y3 (953 852 @ 8E3 0)/3 853 (952

OW ~ ys Os3 0sp Os1 OW ' Dy Ds3 Ds, OW

]

f - i
Oys
o) o o) o
y19) y.2|® 3|9 v.4|©
of o of o
o o O | o o
.Y v s v v
951 5 953
ow |o f) 95 0|)
<1 |© R ® 5.3 5.4/0
~A|o] o of o
o o w J w o w o
s0|© w
o U U U U
© 0| B o) 0|
o| o o| o
o| o o| o
o o o o
x_1 X_2 x_3 x_4

RNN learning issues
Vanishing (exploding) gradient for long dependencies.
» Exploding gradient solution:
> Gradient clipping — clipping the norm of the gradient if exceeds a
certain threshold.
» Vanishing gradient solution:
> Long short-term memory networks (LSTM) [Hochreiter and
Schmidhuber 1997]
> Gated recurrent unit networks (GRU) [Cho et al. 2014]

\E

E)E;

ER) g K [——
=
FI3
- C

5 o)—<>(o 5o
47
>) e SR o)_ﬂ

@ssoc*cooor *eooo—»

05, Bss
ow Bs1 s,
st |Oe— s2ol e s4
o w © w © w
[l
o u U U
e ° B ©
° o °
° o °
© © @
x_1 X 2 x 3 x 4

Outline

Encoder Decoder Approach

Motivations

» What if we want an output of variable length with respect to the
input?

» Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

Motivations

» What if we want an output of variable length with respect to the
input?

» Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

» machine translation: Mary eats apples. ->

Motivations

» What if we want an output of variable length with respect to the
input?

» Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

» machine translation: Mary eats apples. -> Marie mange des
pommes.

> question answering: Tim is playing in his room. | |Where is
Tim? ->

Motivations

» What if we want an output of variable length with respect to the
input?

» Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

» machine translation: Mary eats apples. -> Marie mange des
pommes.

> question answering: Tim is playing in his room. | |Where is
Tim? -> Tim is in his room.

Motivations

» What if we want an output of variable length with respect to the
input?

» Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

» machine translation: Mary eats apples. -> Marie mange des
pommes .
> question answering: Tim is playing in his room. | |Where is
Tim? -> Tim is in his room.
Encoder decoder a.k.a. sequence to(2) sequence learning.
[Sutskever et al. 2014]

Sequence to sequence learning - Encoding

p(Zl, ey ZT 7| X1, ...,XT)

Sequence to sequence learning - Encoding

p(Zl7 ...,ZT/|X17 ...,XT)

» Encode the entire input sequence in a single vector

St:f(U‘Xt+W‘St_]_)

_p»0 000
©o00o0
©000

o
o
o
©)
?

x1 x2 x38 <eos>

Sequence to sequence learning - Decoding

p(zl7 "'aZT'|X17 "'aXT)

> proceed like in a standard RNN starting from the encoding vector

y1 = softmax(V - st.)

y_1

> »@ o000
@000
_»@o000
_»@o000

1 x2 x3 <eos>

Sequence to sequence learning - Decoding

p(Zl, ...7ZT/|X17 ...7XT)

» proceed like in a standard RNN starting from the encoding vector
y1 = softmax(V - st.)
» and then continue decoding the second word in the sequence with

sd=Ff(U-z1+W-s1.), y»=softmax(V -s)

y1 y2

© 000
_s@o0o0o0
»@ o000
»@ 000

x1 x2 x3 <eos> z_1

Sequence to sequence learning - Decoding
p(Zl,...7ZT/|X1,...7XT)

» Begin to decode the output sequence conditioning on this vector
y1 = softmax(V - st.)
» continue decoding the second word in the sequence with
s?=f(U-z2+W-s1.), y»= softmax(V -s{)

> keep decoding until an <eos> token is predicted.

y1l y2 y3 y4 yb5 <eos>

—»(© 00 0)
—»(© 00 0)
»@ 000
»@ 000
»@—»

I><
—_

X2 x3 <eos> z1 z2 z3 z4 z5

Encoder decoder

p(Z]_7 <y ZT7 | X1 "'7XT) = Hp(zt|sTe7zl7 "'7Zt—1)

y1 y2 y3 y4 y5 <eos>

i

x_3 <eos> 271 272 273 274 275

> »@ o000
_»@o000
_»(@000

_»(© 0 00)

—_
‘><
N

Conclusions

» Vanishing gradient is even more problematic in this setting.
» LSTMs or GRUs are crucial to capture long term dependencies.

» Very appealing in task like machine translation.

y_1 y2 y3 y4 y5 <eos>

e

x1 x2 x38 <eos> z_1 z_2 z_3 z_4 z_5

0000
s o000
_s,0000
_s,0@0000

Lecture recap

Word embeddings recap
Neural networks recap

Recurrent neural networks

vV v . vvY

Sequence to sequence learning with neural networks

That's it!

Thanks for your attention!
Questions?

	Word Embeddings Recap
	Recurrent Neural Networks
	Encoder Decoder Approach

