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Word Representation

» In traditional NLP words are represented as a one-hot vector

» Syntactically and semantically correlated words appear as completely
different symbols

> Add general features to the word, pos, prefixes, etc. to overcome the
problem of data sparsity

» machine learning algorithms “understand” that dog is similar to
dogs

but what about cat and dog ? or good and amazing ?
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Distributed Word Representation

“You shall know a word by the company it keeps!” (J. R. Firth, 1957)

» the meaning of a word is given by the context in which the word
appears

» if two words appear in similar contexts (company), they have, to
some extent, similar meanings.

How can we formalize this intuition?



Co-occurence matrix

Corpus sentences ‘ l Co-occurrence counts | l Vector
He also found five fish swimming in murky water in an the 12 12
old bathtub.
a 9 9
‘We do abhor dust and dirt, and stains on the bathtub,
and any kind of filth. of 7 7
Above At the far end of the garden room a bathtub has and 6 6
been planted with herbs for the winter. 5
They had been drinking Cisco, a fruity, wine-based fluid mn g
that smells and tastes like a mixture of cough syrup and .
bathtub gin. ﬁ |:> .
Science finds that a surface tension on the water can L 2 2
draw the boats together, like toy boats in a bathtub. water | 2 9
In fact, the godfather of gloom comes up with a plot that e 2
takes in Windsor Davies (the ghost of sitcoms past), a 2
bathtub and a big box of concentrated jelly. from 2 9
“I'l tell him,” said the Dean from the bathroom above stain i 1
the sound of bathwater falling from a great height
into the ample Edwardian bathtub. toy 1 1
god- 1 1
father 1
Cisco |1
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Learning word representations

» Vanilla count-based approaches results in huge sparse matrices
» They can be approximated to dense matrices using SVD.

> Bengio et al. 2006 introduced a neural language model for learning
word representations. expensive

» Most popular model nowadays is Google's skip-gram word2vec
[Mikolov et al. 2013].

» The idea is to predict context words of a given word.



Skip-gram word2vec

W e R!VI*9 is the word embedding matrix

C € RIVIX? is the context embedding matrix
V is the words dictionary

d is the vector size of the word representation

vV v v v Yy

the size of the context window is given as hyperparameter

For each context, word pair (¢, w) € D, we want to maximize

oy ep(C(e)- W(w)
PLelw) = S op(C(e) - W(w))’
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Skip-gram word2vec

For each context, word pair (c, w) € D, we want to maximize

exp(C(c) - W(w))
2o exp(C(c) - W(w))’

p(clw) =

Cons
> > . is intractable, but negative sampling does the job.
Pros

» Log-linear, easy to train!
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Word representations

Ok, well done! Now what?

» word embeddings as input to neural networks

» since deep learning models seek to solve non-convex optimization

problems, starting from a good point in the parameters space usually
helps.
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Neural networks recap

W2 + b2

O O O h = fix W1 + b1)

t W1 + b1

. . . . Input layer (x)

Wi is a parameter matrix and by is the bias
f is a non-linear activation function

h is a hidden layer of the network

W,, b, more parameters

vvyyy



Multi-layer perceptron

@) y = softmax(h W2 + b2)

A
W2 + b2
O 0O O h =f(x W1 + b1)
4 W1 + b1

[. . . .] Input layer (x)

Wi is a parameter matrix and by is the bias
f is a non-linear activation function

h is a hidden layer of the network

W,, b, more parameters

vV vyYyye.y



Multi-layer perceptron

@) y = softmax(h W2 + b2)

A
W2 + b2
O 0O O h =f(x W1 + b1)
4 W1 + b1

[. . . .] Input layer (x)

» W is a parameter matrix and by is the bias
» f is a non-linear activation function
> his a hidden layer of the network
» W5, b, more parameters
We can add as many hidden layers as we like transforming it in a deep
neural network.



Neural networks recap

@) y = softmax(h W2 + b2)

A
W2 + b2
O O O h = fix W1 + b1)
t W1 + b1

[. . . .] Input layer (x)

Standard feedforward neural networks cannot deal with variable length
input.



Language modeling

Compute the probability of a sentence, or
given a sequence of words predicting the word that comes next.

> trigram language model p(x:|x;—1, Xt—2)

Mike  hardly ever Dbelieves me
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Language modeling

Compute the probability of a sentence, or
given a sequence of words predicting the word that comes next.

> trigram language model p(x:|x;—1, Xt—2)

Mike  hardly ever Dbelieves me

©o00 ©o00 ©o00 ©o00 ©o00 © 0 O
(0000 (000 (@000 (0000 (0000000

<bos-1>, <bos>  <bos>, Mike Mike, hardly hardly, ever ever, believes believes, me

» cannot “see” the subject so cannot predict the right verb
> increase the size of the model.

» what about longer dependencies ?
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Recurrent Neural Networks
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Recurrent Neural Networks
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RNN step 1
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RNN step 2
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RNN step 3

y_1 = softmax(s_1 V)

s_1=f(x_1U+s_0W)
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RNN step 4
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In each step we use information coming from all the previous steps.



Language modeling (reprise)

Mike hardly ever believes me <eos>
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Mike hardly ever believes me <eos>
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Long dependencies are captured (at least in theory)



Training RNNs

> Total error is the sum of errors at each time step >, E(y;", y)
» Error is calculated as cross entropy loss E(y;, y:) = —y; log y:

» Calculating the gradients for V depends only on the current time
step t.

» For the recurrent parameters W is a bit different.
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Backpropagation through time
Since we sum errors, we also sum gradients at each time step.
OE _ -~ OE,
ow - ow
Following standard backprop derivation, for each time step t we end-up
having:
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Backpropagation through time

For t = 3 we have:

8E3 Z 3E3 8)/3 853 8Sk
8y3 853 aSk ow

that is unfolded as:

8E3 N 8E3 (9}/3 (953 852 651 8E3 (9}/3 (953 652

OW ~ ys Os; 95,95, OW | By, Bs; D5, OW

<
<
<

@©® 06 ="©@ 060606 —*E06 06

@oeoorc*Goo0) —*E0 00 »

@eeo)yc"c0ooo) "0 o0 o)—»

=

c
c
c

L @eeserreoo 0 =Eo 60>

x

x
(N
x
()
x
~



Backpropagation through time
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Backpropagation through time
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Backpropagation through time
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Backpropagation through time
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Backpropagation through time
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Backpropagation through time
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Backpropagation through time
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RNN learning issues
Vanishing (exploding) gradient for long dependencies.
» Exploding gradient solution:
> Gradient clipping — clipping the norm of the gradient if exceeds a
certain threshold.
» Vanishing gradient solution:
> Long short-term memory networks (LSTM) [Hochreiter and
Schmidhuber 1997]
> Gated recurrent unit networks (GRU) [Cho et al. 2014]
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Motivations

» What if we want an output of variable length with respect to the
input?

» Can we use RNN for tasks where we have a sequence as input and
we want another sequence as output?

» machine translation: Mary eats apples. -> Marie mange des
pommes .
> question answering: Tim is playing in his room. | |Where is
Tim? -> Tim is in his room.
Encoder decoder a.k.a. sequence to(2) sequence learning.
[Sutskever et al. 2014]
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Sequence to sequence learning - Encoding

p(Zl7 ...,ZT/|X17 ...,XT)

» Encode the entire input sequence in a single vector

St:f(U‘Xt+W‘St_]_)
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Sequence to sequence learning - Decoding

p(zl7 "'aZT'|X17 "'aXT)

> proceed like in a standard RNN starting from the encoding vector

y1 = softmax(V - st.)

y_1
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Sequence to sequence learning - Decoding

p(Zl, ...7ZT/|X17 ...7XT)

» proceed like in a standard RNN starting from the encoding vector
y1 = softmax(V - st.)
» and then continue decoding the second word in the sequence with

sd=Ff(U-z1+W-s1.), y»=softmax(V -s)

y1 y2
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Sequence to sequence learning - Decoding
p(Zl,...7ZT/|X1,...7XT)

» Begin to decode the output sequence conditioning on this vector
y1 = softmax(V - st.)
» continue decoding the second word in the sequence with
s?=f(U-z2+W-s1.), y»= softmax(V -s{)

> keep decoding until an <eos> token is predicted.

y1l y2 y3 y4 yb5 <eos>
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Encoder decoder

p(Z]_7 <y ZT7 | X1 "'7XT) = Hp(zt|sTe7zl7 "'7Zt—1)

y1 y2 y3 y4 y5 <eos>

i

x_3 <eos> 271 272 273 274 275
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Conclusions

» Vanishing gradient is even more problematic in this setting.
» LSTMs or GRUs are crucial to capture long term dependencies.

» Very appealing in task like machine translation.
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Lecture recap

Word embeddings recap
Neural networks recap

Recurrent neural networks

vV v . vvY

Sequence to sequence learning with neural networks



That's it!

Thanks for your attention!
Questions?
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