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Motivation

I Neural networks have hard times to capture long-range
dependencies.

Yes, even LSTMs.
I Memory networks (MN) and Neural Turing machines (NTM) try to

overcome this problem using an external memory.
I MN are mainly motivated by the fact that it is hard to capture

long-range dependencies,
I while NTM are devised to perform program induction.
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Memory network components

I Input feature map (I): transforms the input in a feature
representation, e.g., bag of words

I Generalization (G): writes the input, or a function of it, on the
memory

I Output feature map (O): reads the most relevant memory slots
I Response (R): given the info read from the memory, returns the

output

Extremely general framework which can be instantiated in several ways.
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Question answering

I Input text: Fred moved to the bedroom. Joe went to the
kitchen. Joe took the milk. Dan journeyed to the
bedroom.

I Input question: Where is Dan now?
I Output answer: bedroom

Let’s see a simple instantiation of memory networks for QA.
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G component

The sentences are then written to the memory sequentially, via the
component G.

Fred moved to the bedroom. 
Joe went to the kitchen. 
Joe took the milk. 
Dan journeyed to the bedroom. 

m

Notice that the memory is fixed in this approach once is written, it is not
changed neither during learning nor during testing.
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O component

The best matching memory (supporting fact), according to the question
is retrieved with the component O.

Fred moved to the bedroom. 
Joe went to the kitchen. 
Joe took the milk. 
Dan journeyed to the bedroom. 

m

Where is Dan now?

o1 = O1(q,m) = argmaxi=1,...,NsO(q,mi)

where the similarity function is defined as:

sO(x , y) = xT · UT
O · UO · y
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Question Answering

We also need another supporting fact

Fred moved to the bedroom. 
Joe went to the kitchen. 
Joe took the milk. 
Dan journeyed to the bedroom. 

m

Where is the milk now?

o2 = O2(q + mo1 ,m) = argmaxi=1,...,NsO(q + mo1 ,mi)
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Question Answering

Given the supporting facts and the query, the best matching word in the
dictionary is retrieved.

Fred moved to the bedroom. 
Joe went to the kitchen. 
Joe took the milk. 
Dan journeyed to the bedroom. 

m

Where is the milk now?

Answer: kitchen

r = argmaxw∈W sr (q + o1 + o2,w)

where the similarity function is defined as below:

sr (x , y) = xT · UT
R · UR · y



Training

Training is then performed with a hinge loss and stochastic gradient
descent (SGD). ∑

f 6=mo1

max(0, γ − sO(q,mO1) + sO(q, f ))+

∑
f ′ 6=mo2

max(0, γ − sO(q + mO1 ,mO2) + sO(q + mO1 , f ′))+

∑
r̂ 6=r

max(0, γ − sR(q + mO1 + mO2 , r) + sR(q + mO1 + mO2 , r̂))

Negative sampling instead of sum.
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Experiments

Question answering with artificially generated data.

model accuracy
RNN 17.8 %
LSTM 29.0 %
MN k=1 44.4 %
MN k=2 99.9 %
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I Need to iterate over the entire memory.
I The write component is somehow naive.
I Strongly fully extremely supervised.
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Introduction

I argmax is substituted by a soft attention mechanism
I less supervised, no need for annotated supporting facts



QA example

Transform sentences in vector representation, write representations in the
memory, transform query in vector representation.

Fred moved to the bedroom. 

Joe went to the kitchen. 

Joe took the milk.
 
Dan journeyed to the bedroom. 

m

Where is Dan now?



QA example

For each sentence in memory calculate the "level of compatibility"
between the sentence and the query - soft attention.

Fred moved to the bedroom. 

Joe went to the kitchen. 

Joe took the milk.
 
Dan journeyed to the bedroom. 

m

Where is Dan now? B

A
softmax(u^T A m)

u = B · q

pi = softmax(uT · A ·mi)



QA example
Calculate the weighted output representation.

Fred moved to the bedroom. 

Joe went to the kitchen. 

Joe took the milk.
 
Dan journeyed to the bedroom. 

m

Where is Dan now? B

A
softmax(u^T A m)

C

o

ci = C ·mi

where c is the output memory representation

o =
∑

i
(pici)

and o is the weighted output representation.



QA example
Calculate the most likely answer given the query and the output memory
representation.

Fred moved to the bedroom. 

Joe went to the kitchen. 

Joe took the milk.
 
Dan journeyed to the bedroom. 

m

Where is Dan now? B

A
softmax(u^T A m)

C

o

Answer: bedroom

W

r = argmaxw∈W (w · (o + u))



QA example

As in the fully supervised case, we can performs multiple readings of the
memory given the previous result.

Fred moved to the bedroom. 

Joe went to the kitchen. 

Joe took the milk.
 
Dan journeyed to the bedroom. 

m

Where is the milk now?
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A1
softmax(u1^T A1 m)

C1

o1

c1
i = C1 ·mi

where c1 is the output memory representation at the first hop

o1 =
∑

i
(p1

i c1
i )

and o1 is the weighted output representation at the first hop.
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QA example

Fred moved to the bedroom. 

Joe went to the kitchen. 

Joe took the milk.
 
Dan journeyed to the bedroom. 

m

Where is the milk now? B

A1
softmax(u1^T A1 m)

C1

o1

softmax(u2^T A2 m)

A2

C2

o2

c2
i = C2 ·mi

where c2 is the output memory representation at the second hop

o2 =
∑

i
(p2

i c2
i )

and o2 is the weighted output representation at the second hop.



QA example
As in the fully supervised case we can performs multiple reading of the
memory given the previous result.

Fred moved to the bedroom. 

Joe went to the kitchen. 

Joe took the milk.
 
Dan journeyed to the bedroom. 

m

Where is the milk now? B

A1
softmax(u1^T A1 m)

C1

o1

softmax(u2^T A2 m)

A2

C2

o2

Answer: kitchen

W

r = argmaxw∈W (w · (o2 + u2))



Experiments

Question answering toy tasks, Weston et al. (2016).

model mean error
Strongly sup. MN 6.7 %
LSTM 51.3 %
EEMN k=1 25.8 %
EEMN k=2 15.6 %
EEMN k=3 13.3 %
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Introduction

I As Turing machines, NTMs have a controller, a memory, a write
head, and a read head. NTMs are differentiable.

I Differently from Memory Networks,
I the attention mechanism of NTMs is more sophisticated.
I NTMs are already equipped for rewriting the memory.



Read head

I The memory can be updated during training and testing, at each
time t we have a memory Mt .

I wr
t is the weighting vector over the memory at time t - It is

constrained to be a probability distribution.

I The read vector is calculated as:

rt =
∑

i
wt(i)Mt(i)

wr
t is emitted by the controller.



Read head

I The memory can be updated during training and testing, at each
time t we have a memory Mt .

I wr
t is the weighting vector over the memory at time t - It is

constrained to be a probability distribution.

I The read vector is calculated as:

rt =
∑

i
wt(i)Mt(i)

wr
t is emitted by the controller.



Read head

I The memory can be updated during training and testing, at each
time t we have a memory Mt .

I wr
t is the weighting vector over the memory at time t - It is

constrained to be a probability distribution.

I The read vector is calculated as:

rt =
∑

i
wt(i)Mt(i)

wr
t is emitted by the controller.



Write head

I ww
t is the write weighting vector (emitted by the controller).

I Mt(i) represents the memory location i at time step t.

I write operation is composed by two parts:
I erase part

I the controller emits an erase vector et in the range (0,1)

M̃t(i) = Mt−1(i)[1 − wt(i)et ]

I add part
I the controller emits an add vector at

Mt(i) = M̃t(i) + wt(i)at
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Addressing mechanism

How do we get wt?
I content-based addressing
I location-based addressing



Content-based addressing

I the controller emits a key vector kt

I the key vector is compared to the memory via cosine similarity K [·, ·]
I

wt(i) = exp(βt · K [kt ,Mt(i)])∑
j exp(βt · K [kt ,Mt(j)])

I βt is a scalar emitted by the controller that attenuates or amplify
the precision of the focus



Location-based addressing

Interpolation gate gt , decides how much of the content-based weighting
is preserved.

wg
t = gtwc

t + (1− gt)wt−1



Location-based addressing

Convolutional shift (as in Turing machines)

w̃t(i) =
N−1∑
j=0

wg
t (j)st(i − j)

the shift weighting st is emitted by the controller and is a distribution
over possible shifts.



Location-based addressing

Sharpening,
wt(i) = w̃t(i)γt∑

j w̃t(j)γt

this operation is useful when the shift weighting is not sharp.



Controller network

I It can be a recurrent or a feedforward neural network.
I it takes as input a vector xt and the memory Mt

I the output is

yt = (at

, et , {kt , βt , gt , st , γt}r , {kt , βt , gt , st , γt}w )

I the emissions for the write and read head, and the erase and add
vectors are adjusted to meet the constraints.
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Experiments

Can a neural network learn procedures/programs?
I copy task
I repeat copy
I associative recall
I sorting

On all these tasks NTM outperforms LSTM.



Copy task demo

https:
//thumbs.gfycat.com/WelllitInferiorAndeancondor-mobile.mp4

https://thumbs.gfycat.com/WelllitInferiorAndeancondor-mobile.mp4
https://thumbs.gfycat.com/WelllitInferiorAndeancondor-mobile.mp4


Extensions

Program induction papers:
I Neural Programmer: Inducing Latent Programs with Gradient

Descent
I Neural Programmer-Interpreters
I Reinforcement Learning Neural Turing Machines - Revised
I Neural Random-Access Machines
I Neural GPUs Learn Algorithms

Memory networks extensions:
I Ask Me Anything: Dynamic Memory Networks for Natural Language

Processing
I The Goldilocks Principle: Reading Children’s Books with Explicit

Memory Representations



Lecture recap

I Memory networks
I End-to-end memory networks
I Neural Turing machines
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