Hierarchical Multi-Label Conditional Random Fields for Aspect-Oriented Opinion Mining

Diego Marcheggiani⁺, Oscar Täckström*, Andrea Esuli⁺, Fabrizio Sebastiani⁺

 + Istituto di Scienza e Tecnologie dell'Informazione Consiglio Nazionale delle Ricerche 56124 Pisa, Italy firstname.lastname@isti.cnr.it

> * Swedish Institute of Computer Science SE-164 29 Kista, Sweden oscar@sics.se

ECIR 2014 Amsterdam, NL, 15 April 2014

Introduction

Hierarchical Multi-Label CRF Models for Opinion Mining

Experiments

Introduction

Hierarchical Multi-Label CRF Models for Opinion Mining

Experiments

Motivations

"Good vlue, terrible service"

OK the value is good and the **hotel is reasonably priced**, **but the service is** terrible. I was waiting 10 min at the erception desk for the guy to figure out whether there was a clean room available or not. That place is a mess. Rooms are clean and nice, but bear in mind you just pay for lodging, service does not seem to be included.

O Value
O Location
O Check in / front desk

Over the service of the service of the service of the service of the service (e.g., internet access)

- Overall rating is commonly attached to product reviews.
- Some websites (e.g., TripAdvisor) allow reviewers to include aspect-specific ratings.
- Both of them are of little use if the reader is interested in the comments about specific aspects of the product.

Motivations (cont'd)

▶ E.g., we want to see at first glance why the reviewer gave a negative rating for aspect Check-in.

Was the receptionist impolite? Was the waiting too long?

Overall rating: ★ ★ ★ ★	Aspect-specific opinions				
Title: Good vlue [sic], terrible service	Value: Positive	Service: Negative			
OK the value is good and the hotel is reasonably priced, but the service is terrible.	Value: Positive	Service: Negative			
I was waiting 10 min at the erception [sic] desk for the guy to figure out whether there was a clean room available or not.	Checkin: Negative	Service: Negative			
That place is a mess.	Service: Negative				
Rooms are clean and nice, but bear in mind you just pay for lodging, service does not seem to be included.	Cleanliness: Positive	Service: Negative			

The goal of this task is predicting, for each sentence in the review, whether the sentence expresses a positive, neutral, or negative opinion (or no opinion at all) about a specific aspect of the product.

Problem Definition

Overall rating: ***	Aspect-specific opinions				
Title: Good vlue [sic], terrible service	Value: Positive	Service: Negative			
OK the value is good and the hotel is reasonably priced, but the service is terrible.	Value: Positive	Service: Negative			
I was waiting 10 min at the erception [sic] desk for the guy to figure out whether there was a clean room available or not.	Checkin: Negative	Service: Negative			
That place is a mess.	Service: Negative				
Rooms are clean and nice, but bear in mind you just pay for lodging, service does not seem to be included.	Cleanliness: Positive	Service: Negative			

- A: set of aspect labels (Rooms, Cleanliness, Value, Service, Location, Check-in, Business, Food, Building, Other);
- Y: set of opinion labels (Positive, Negative, Neutral);
- ▶ **x**: review composed of *T* consecutive sentences;
- For each sentence t ∈ {1, ..., T} and each aspect a ∈ A, we seek to infer the values of the opinion y_t^a ∈ 𝔅 ∪ {No-op} (where No-op stands for "no opinion");

(1)

Introduction

Hierarchical Multi-Label CRF Models for Opinion Mining

Experiments

Linear-Chain CRFs Baseline

We adopt CRFs as a learning algorithm.

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{\Psi_c \in \mathbf{F}} \Psi_c(\mathbf{y}_c, \mathbf{x}_c) \propto \prod_{\Psi_c \in \mathbf{F}} \Psi_c(\mathbf{y}_c, \mathbf{x}_c),$$

- Ψ_c : a factor;
- **F**: the set of factors that model the distribution $p(\mathbf{y}|\mathbf{x})$;
- > $Z(\mathbf{x})$: a normalization function.

Baseline: the traditional Linear-Chain (LC) CRF:

$$p(\mathbf{y}|\mathbf{x}) \propto \prod_{a \in \mathbb{A}} \prod_{t=1}^{T} \Psi_s(y_t^a, \mathbf{x}_t) \prod_{t=1}^{T-1} \Psi_{\frown}(y_t^a, y_{t+1}^a)$$

イロト イポト イヨト イヨト

Multi-Label Models

In order to model the dependencies between the opinion related to different aspects we introduce the multi-label factor $\Psi_m(y_t^a, y_t^b)$

We first consider the Independent Multi-Label (IML) model:

$$p(\mathbf{y}|\mathbf{x}) \propto \prod_{t=1}^{T} \prod_{a \in \mathbb{A}} \Psi_{s}(y_{t}^{a}, \mathbf{x}_{t}) \prod_{b \in \mathbb{A} \setminus \{a\}} \Psi_{m}(y_{t}^{a}, y_{t}^{b})$$

IML can be combined with **LC** to obtain the *Chain Multi-Label* (**CML**) model:

$$p(\mathbf{y}|\mathbf{x}) \propto \prod_{t=1}^{T} \prod_{a \in \mathbb{A}} \Psi_s(y_t^a, \mathbf{x}_t) \prod_{b \in \mathbb{A} \setminus \{a\}} \Psi_m(y_t^a, y_t^b) \prod_{t=1}^{T-1} \Psi_{\frown}(y_t^a, y_{t+1}^a)$$

Hierarchical (Multi-Label) Models

Jointly modeling the overall opinion y_o and the sentence-level opinions y_t^a in a hierarchical fashion can be beneficial to prediction at both levels:

$$\Phi(y_o, y_t^a, \mathbf{x}) = \Psi_o(y_o, \mathbf{x}_o) \cdot \Psi_h(y_t^a, y_o)$$

Hierarchical (Multi-Label) Models cont'd

LC, **IML**, **CML** can be adapted to include the overall rating variable into a hierarchical model structure; this produces:

1. the Linear-Chain Overall (LCO) model:

$$p(\mathbf{y}|\mathbf{x}) \propto \prod_{t=1}^{T} \prod_{a \in \mathbb{A}} \Phi(y_o, y_t^a, \mathbf{x}) \cdot \Psi_s(y_t^a, \mathbf{x}_t) \prod_{t=1}^{T-1} \Psi_{\frown}(y_t^a, y_{t+1}^a)$$

2. the Independent Multi-Label Overall (IMLO) model:

$$p(\mathbf{y}|\mathbf{x}) \propto \prod_{t=1}^{T} \prod_{a \in \mathbb{A}} \Phi(y_o, y_t^a, \mathbf{x}) \cdot \Psi_s(y_t^a, \mathbf{x}_t) \prod_{b \in \mathbb{A} \setminus \{a\}} \Psi_m(y_t^a, y_t^b)$$

3. and the Chain Multi-Label Overall (CMLO) model:

$$p(\mathbf{y}|\mathbf{x}) \propto \prod_{t=1}^{T} \prod_{a \in \mathbb{A}} \Phi(y_o, y_t^a, \mathbf{x}) \cdot \Psi_s(y_t^a, \mathbf{x}_t) \prod_{b \in \mathbb{A} \setminus \{a\}} \Psi_m(y_t^a, y_t^b) \prod_{t=1}^{T-1} \Psi_{\frown}(y_t^a, y_{t+1}^a)$$

Features

We represent the sentence \mathbf{x}_t via the following features:

- word unigrams and bigrams;
- polarity lexicon features:
 - General Inquirer;
 - MPQA;
 - SentiWordNet;
- aspect-specific lexicon features:
 - \blacktriangleright the lexicon gives the likelihood of the co-occurrence between words and aspects using the χ^2 measure.

イロト イポト イヨト イヨト

We represent the entire review \mathbf{x}_o via the following features:

- word unigrams and bigrams;
- polarity lexicon features:
 - General Inquirer;
 - MPQA;
 - SentiWordNet.

Inference and Learning

Problem:

- presence of loops in the graphs;
- exact inference is not tractable.

We revert to approximate inference via Gibbs sampling

- by adopting SampleRank as the learning algorithm: this is a natural fit for sampling-based inference;
- by using Gibbs sampling to obtain the MAP assignment.

イロト イヨト イヨト イヨ

Introduction

Hierarchical Multi-Label CRF Models for Opinion Mining

Experiments

Dataset

We have produced a new dataset¹ of manually annotated hotel reviews.

- three annotators annotated 442 randomly selected reviews from a publicly available TripAdvisor dataset for a total of 5799 sentences;
- the annotations are related to 9 aspects often present in hotel reviews (Rooms, Cleanliness, Value, Service, Location, Check-in, Business, Food, Building) plus the "catch-all" aspect Other;

¹Available at http://nemis.isti.cnr.it/~marcheggiani/datasets/. <

Dataset (cont'd)

- the annotation distinguishes between Positive, Negative and Neutral/Mixed opinions;
- out of the 442 reviews, 73 reviews were independently annotated by all three annotators (inter-annotator agreement);
- the remaining reviews were then partitioned into a training set (70%) and a test set (30%).

Evaluation Measures

In the evaluation phase we view the task as composed of the following two subtasks:

- Aspect identification:
 - standard F₁ measure

$$F_1 = rac{2 T P}{2 T P + F P + F N}$$

- Opinion prediction:
 - macro-averaged mean absolute error (MAE^M) to each applicable (true positive) aspect for the sentence

$$\mathrm{MAE}^{M}(\mathbf{T}, \widehat{\mathbf{T}}) = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{|\mathbf{T}_{j}|} \sum_{y_{i} \in \mathbf{T}_{j}} |y_{i} - \hat{y}_{i}|$$

where ${\bf T}$ is the correct label assignments and $\widehat{{\bf T}}$ is the corresponding model predictions.

Evaluation Scenario

We perform two separate evaluations:

- 1. we compare the different models by their accuracy on the test set;
- 2. we compare the top-performing model to the human annotators on the set of 73 reviews independently annotated by all 3 annotators.

Since training is non-deterministic due to the use of sampling-based inference, we report the average over five trials with different random seeds.

(1)

Models Comparison Results

Table : Sentence-level aspect identification results in terms of F_1 (higher is better).

	Other	Service	Rooms	Clean.	Food	Location	Check-in	Value	Building	Business	Avg
LC	.499	.606	.662	.700	.579	.623	.329	.395	.298	.000	.469
IML	.542	.597	.664	.732	.605	.668	.371	.373	.363	.000	.491
CML	.489	.645	.655	.708	.605	.673	.327	.408	.358	.076	.494
LCO	.515	.586	.661	.697	.582	.611	.301	.384	.368	.173	.488
IMLO	.513	.621	.685	.702	.593	.614	.370	.363	.348	.040	.485
CMLO	.531	.629	.663	.706	.602	.618	.271	.393	.350	.081	.485

Table : Sentence-level opinion prediction results (restricted to the true positive aspects for each sentence) in terms of MAE^{M} (lower is better).

	Other	Service	Rooms	Clean.	Food	Location	Check-in	Value	Building	Business	Avg
LC	.526	.721	.572	1.000	.566	.932	.644	.616	.693	.000	.627
IML	.520	.659	.494	.956	.377	.939	.670	.700	.668	.000	.598
CML	.492	.681	.613	.978	.482	.906	.735	.691	.377	.000	.595
LCO	.482	.626	.398	1.000	.633	.903	.690	.490	.233	.000	.546
IMLO	.473	.615	.398	1.000	.457	.970	.343	.469	.269	.000	.500
CMLO	.499	.626	.428	1.000	.711	.906	.536	.552	.232	.000	.549

Human Comparison Results

Table : F_1 results of the best-performing model (IMLO) and the human annotators (higher is better).

	Other	Service	Rooms	Clean.	Food	Location	Check-in	Value	Building	Business	Avg
Human	.607	.719	.793	.795	.553	.575	.794	.464	.733	.631	.675
IMLO	.479	.585	.606	.614	.536	.673	.407	.429	.208	.190	.473

Table : MAE^{M} results of the best-performing model (IMLO) and the human annotators (lower is better).

	Other	Service	Rooms	Clean.	Food	Location	Check-in	Value	Building	Business	Avg
Human	.308	.219	.191	.259	.150	.202	.234	.003	.114	.029	.171
IMLO	.676	.498	.445	.142	.451	.704	.212	.387	.025	.415	.396

イロト イポト イヨト イヨト

Introduction

Hierarchical Multi-Label CRF Models for Opinion Mining

Experiments

Conclusions

▶ We have devised a sequence of increasingly powerful CRF models:

- Multi-label CRF models;
- Hierarchical CRF models;
- We have produced and made available a manually annotated dataset of hotel reviews.
- Model comparison results:
 - IML and CML significantly outperform the LC baseline;
 - the hierarchical models improve the opinion prediction.
- Comparison with human performance:
 - much work remains to be done.

イロト イポト イヨト イヨト

That's it!

Thanks for your attention! Questions?

