Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling

Diego Marcheggiani and Ivan Titov University of Amsterdam

University of Edinburgh

EMNLP 2017 Copenhagen

Contributions

- Syntactic Graph Convolutional Networks
- State-of-the-art semantic role labeling model
 - English and Chinese

Predicting the predicate-argument structure of a sentence

Sequa makes and repairs jet engines.

- Predicting the predicate-argument structure of a sentence
 - Discover and disambiguate predicates

- Predicting the predicate-argument structure of a sentence
 - Discover and disambiguate predicates
 - Identify arguments and label them with their semantic roles

- Predicting the predicate-argument structure of a sentence
 - Discover and disambiguate predicates
 - Identify arguments and label them with their semantic roles

- Predicting the predicate-argument structure of a sentence
 - Discover and disambiguate predicates
 - Identify arguments and label them with their semantic roles

- Predicting the predicate-argument structure of a sentence
 - Discover and disambiguate predicates
 - Identify arguments and label them with their semantic roles

- Only the head of an argument is labeled
- Sequence labeling task for each predicate
- Focus on argument identification and labeling

Related work

- SRL systems that use syntax with simple NN architectures
 - FitzGerald et al., 2015]
 - [Roth and Lapata, 2016]
- Recent models ignore linguistic bias
 - [Zhou and Xu, 2014]
 - [He et al., 2017]
 - [Marcheggiani et al., 2017]

Motivations

Some semantic dependencies are mirrored in the syntactic graph

Motivations

- Some semantic dependencies are mirrored in the syntactic graph
- Not all of them syntax-semantic interface is not trivial

Encoding Sentences with Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [Kipf and Welling, 2017]

- Syntactic GCNs
- Semantic Role Labeling Model
- Experiments
- Conclusions

Graph Convolutional Networks (message passing)

[Kipf and Welling, 2017]

Undirected graph

Graph Convolutional Networks (message passing)

[Kipf and Welling, 2017]

Undirected graph

Update of the blue node

Graph Convolutional Networks (message passing)

[Kipf and Welling, 2017]

[Kipf and Welling, 2017]

GCNs Pipeline

[Kipf and Welling, 2017]

GCNs Pipeline

Extend GCNs for syntactic dependency trees

Encoding Sentences with Graph Convolutional Networks

- Graph Convolutional Networks (GCNs)
- Syntactic GCNs
- Semantic Role Labeling Model
- Experiments
- Conclusions

Syntactic GCNs

$$h_{v}^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_{u}^{(k)} + b_{L(u,v)}^{(k)}\right)$$

Syntactic GCNs

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)}\right)$$
 Syntactic neighborhood

Overparametrized: one matrix for each label-direction pair
W^(k) = V^(k)

$$V_{L(u,v)} = V_{dir(u,v)}$$

Not all edges are equally important

- Not all edges are equally important
- We should not blindly rely on predicted syntax

- Not all edges are equally important
- We should not blindly rely on predicted syntax
- Gates decide the "importance" of each message

- Not all edges are equally important
- We should not blindly rely on predicted syntax
- Gates decide the "importance" of each message

Encoding Sentences with Graph Convolutional Networks

- Graph Convolutional Networks (GCNs)
- Syntactic GCNs
- Semantic Role Labeling Model
- Experiments
- Conclusions

Our Model

- Word representation
- Bidirectional LSTM encoder
- GCN Encoder
- Local role classifier

Word Representation

- Pretrained word embeddings
- Word embeddings
- POS tag embeddings
- Predicate lemma embeddings
- Predicate flag

- Encode each word with its left and right context
- Stacked BiLSTM

GCNs Encoder

Syntactic GCNs after BiLSTM encoder

- Add syntactic information
- Skip connections
- Longer dependencies are captured

Semantic Role Classifier

Local log-linear classifier

Encoding Sentences with Graph Convolutional Networks

- Graph Convolutional Networks (GCNs)
- Syntactic GCNs
- Semantic Role Labeling Model
- Experiments
- Conclusions

Experiments

Data

- CoNLL-2009 dataset English and Chinese
- FI evaluation measure
- Model
 - Hyperparameters tuned on English development set
 - State-of-the-art predicate disambiguation models

84

SRL w/o predicate disambiguation

84

SRL w/o predicate disambiguation

84

SRL w/o predicate disambiguation

SRL w/o predicate disambiguation

84

English Test Set

89

SRL with predicate disambiguation

English Out of Domain

SRL with predicate disambiguation

English Test Set (Ensemble)

90

SRL with predicate disambiguation

FitzGerald et al. (2015) (ensemble) Roth and Lapata (2016) (ensemble) Ours (Bi-LSTM + GCN) (ensemble)

English Test Set (Ensemble)

90

SRL with predicate disambiguation

FitzGerald et al. (2015) (ensemble) Roth and Lapata (2016) (ensemble) Ours (Bi-LSTM + GCN) (ensemble)

Chinese Test Set

SRL with predicate disambiguation

Long-range Dependencies (English Dev Set)

Conclusion

- Syntax-aware state-of-the-art model for dependency-based SRL
 - English and Chinese
- GCNs for encoding syntactic structures into NN
 - Semantics, coreference, discourse

Conclusion

- Syntax-aware state-of-the-art model for dependency-based SRL
 - English and Chinese
- GCNs for encoding syntactic structures into NN
 - Semantics, coreference, discourse

- Funding:
 - ERC StG BroadSem 678254
 - NWO VIDI 639.022.518
 - Amazon Web Services (AWS) grant

github.com/diegma/neural-dep-srl