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Semantic Role Labeling

} Only the head of an argument is labeled
} Sequence labeling task for each predicate
} Focus on argument identification and labeling
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Related work

} SRL systems that use syntax with simple NN architectures
} [FitzGerald et al., 2015]
} [Roth and Lapata, 2016]

} Recent models ignore linguistic bias 
} [Zhou and Xu, 2014]
} [He et al., 2017]
} [Marcheggiani et al., 2017]
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Motivations

} Some semantic dependencies are mirrored in the syntactic graph
} Not all of them – syntax-semantic interface is not trivial



Encoding Sentences with Graph Convolutional Networks

} Graph Convolutional Networks (GCNs) [Kipf and Welling, 2017]
} Syntactic GCNs
} Semantic Role Labeling Model
} Experiments
} Conclusions
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Undirected graph Update of the blue node

[Kipf and Welling, 2017]
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Initial feature 
representation of 

nodes

Representation 
informed by nodes’ 

neighborhood



Encoding Sentences with Graph Convolutional Networks

} Graph Convolutional Networks (GCNs)
} Syntactic GCNs
} Semantic Role Labeling Model
} Experiments
} Conclusions



Example

Lane                               disputed                         those                             estimates

NMOD

SBJ OBJ



Example

Lane                               disputed                         those                             estimates

NMOD

SBJ OBJ

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)



Example

Lane                               disputed                         those                             estimates

NMOD

SBJ OBJ

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)

⇥
W
(1)subj

⇥
W
(1)n

m

o

d

⇥W
(1)

o

b

j



Example

Lane                               disputed                         those                             estimates

NMOD

SBJ OBJ

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)

⇥
W
(1)subj

⇥
W
(1)n

m

o

d

⇥W
(1)

o

b

j

⇥W (1)
o

b

j

0

⇥W
(1
)

n

m

o

d

0

⇥W
(1
)

su
bj

0



Example

Lane                               disputed                         those                             estimates

NMOD

SBJ OBJ

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)

⇥
W
(1)subj

⇥
W
(1)n

m

o

d

⇥W
(1)

o

b

j

⇥W (1)
o

b

j

0

⇥W
(1
)

n

m

o

d

0

⇥W
(1
)

su
bj

0



Example

⇥
W

(1
)

s
e
lf

Lane                               disputed                         those                             estimates

NMOD

SBJ OBJ

⇥
W
(1)subj

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥W (1)
o

b

j

0

⇥
W
(1)n

m

o

d

⇥W
(1
)

n

m

o

d

0

⇥W
(1)

o

b

j

⇥W
(1
)

su
bj

0

ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)



Example

⇥
W

(1
)

s
e
lf

Lane                               disputed                         those                             estimates

NMOD

SBJ OBJ

⇥
W
(1)subj

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥
W

(1
)

s
e
lf

⇥W (1)
o

b

j

0

⇥
W
(1)n

m

o

d

⇥W
(1
)

n

m

o

d

0

⇥W
(1)

o

b

j

⇥W
(1
)

su
bj

0

ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)

ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)ReLU(⌃·)

⇥
W

(2
)

s
e
lf ⇥
W

(2
)

s
e
lf

⇥
W

(2
)

s
e
lf

⇥
W

(2
)

s
e
lf

⇥
W
(2)subj⇥W

(2
)

su
bj

0

⇥W (2)
o

b

j

0

⇥W
(2)

o

b

j

⇥
W

(2)n

m

o

d

⇥W
(2
)

n

m

o

d

0

Stacking GCNs widens the 
syntactic neighborhood
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Syntactic GCNs

Syntactic neighborhood Self-loop is included in N
Messages are direction and 

label specific
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} Overparametrized: one matrix for each label-direction pair
}

Syntactic GCNs

Syntactic neighborhood

W (k)
L(u,v) = V (k)

dir(u,v)

Self-loop is included in N
Messages are direction and 

label specific
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Edge-wise Gates

} Not all edges are equally important
} We should not blindly rely on predicted syntax
} Gates decide the “importance” of each message

Gates depend on 
nodes and edges Lane                               disputed                         those                             estimates
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Our Model

} Word representation
} Bidirectional LSTM encoder
} GCN Encoder
} Local role classifier



Word Representation

} Pretrained word embeddings
} Word embeddings
} POS tag embeddings
} Predicate lemma embeddings
} Predicate flag
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word
representation



BiLSTM Encoder

} Encode each word with its left and right context
} Stacked BiLSTM

Lane   disputed   those   estimates

word
representation

J layers 
BiLSTM



GCNs Encoder

} Syntactic GCNs after BiLSTM encoder
} Add syntactic information
} Skip connections
} Longer dependencies are captured
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Semantic Role Classifier

Lane   disputed   those   estimates

word
representation

J layers 
BiLSTM

dobj

nmodnsubj

K layers 
GCN

A1
Classifier

�

predicate 
representation

candidate argument 
representation

} Local log-linear classifier

p(r|ti, tp, l) / exp(Wl,r(ti � tp))
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Experiments

} Data
} CoNLL-2009 dataset - English and Chinese
} F1 evaluation measure

} Model
} Hyperparameters tuned on English development set
} State-of-the-art predicate disambiguation models
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Long-range Dependencies (English Dev Set)
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